

NOMBRE:		
	CARNET:	

PARCIAL I (30%)

PROBLEMA 1 (4 pts) Verdadero y Falso

1.	() 1 °R representa un mayor intervalo de temperatura que 1 K
2.	() Una propiedad intensiva es aquella que no depende del tamaño del sistema
3.	() la diferencia de presión entre dos puntos de un fluido puede estimarse como $ ho g h$
4.	() a una cierta temperatura y presión, si duplico la masa del sistema el volumen específico
	se	duplica también.

PROBLEMA 2 (8 puntos)

Un depósito rígido cerrado contiene vapor de agua a 240 °C y con una lectura de manómetro de 14 bar. La temperatura desciende a 20 °C como resultado de ceder calor al ambiente. Determine:

a.	La presión final:	
b.	La fracción de masa que condensa:	
c.	Los porcentajes del volumen ocupado por el líquido:	_

PROBLEMA 3 (10 puntos)

El dicloroflurometano (DFM) se utiliza como propolente en los envases de aerosol.

- a) Determine la cantidad de DFM contenida en 250 mL a una presión de 600 kPa y 105 °F.
- b) Determine la densidad del DFM 30°C y 100 kPa.

PROBLEMA 4 (8 puntos)

Se tiene una bombona de butano de capacidad 20 litros, inicialmente un manómetro colocado en la bombona indica 4 MPa y luego de emplear la bombona en la cocina se lee una presión absoluta de 0,1 MPa. Si la bombona en ambos estados tiene una temperatura de 30 °C, determine la masa de butano consumida en la cocina.

Solución P1:

Estado Inicial:

$P_1 =$	14 barg= 15 bar-a
$T_1 =$	240 C

VSC
$$v_1=0,14831 \text{ m}^3/\text{kg}$$

Estado Final

T ₂ =	20 C
V ₂ =	0,14831 m³/kg

Como el tanque es cerrado (m ctte) y rígido (V ctte) el volumen específico se mantiene durante el enfriamiento.

a. En estas condiciones el sistema está en saturación Líquido-Vapor y sus propiedades de equilibrio son:

Solución Problema 3

Estado Inicial:

$P_1 =$	4 MPa (manométrica)
$T_1 =$	30 C

Como P^{sat} a 30 °C es de 284 kPa la fase es LC Se aproxima $v_1=v_f=0,001729 \text{ m}^3/\text{kg}$

$$m_1 = \frac{V_{bombona}}{v_1} = \frac{0.02m^3}{v_1} = 11.8kg$$

P=	0,023393 bar
v _f =	0,0010018 m ³ /kg
_{Vq} =	57,757 m ³ /kg

Por tanto la calidad del sistema es:

$$x_2 = \frac{v - v_g}{v_g - v_f} = 0,0026$$

- **b.** La cantidad de agua condensada será $1 x_2 = 0,9974$ o **99,74%**.
- **c.** Porcentaje de volumen ocupado por el líquido $\frac{V_L}{V_2} \times 100$:

$$V_2 = V_L + V_g = m_L v_L + m_g v_g = (1 - x_2)v_L + x_2 v_g$$

$$\frac{V_L}{V_2} = \frac{(1 - x_2)}{(1 - x_2)v_L + x_2v_g} = 0,00661 = \frac{0,661\%}{0.00661}$$

Estado Final

$T_2 =$	30 C
$P_2 =$	0 Mpa(manométrica)

Como $P_2 > P^{sat}$ fase es VSC $V_2 = 0.4214 \text{ m}^3/\text{kg}$

$$m_2 = \frac{V_{bombona}}{v_2} = \frac{0.02m^3}{v_2} = 0.047kg$$

luego se consumio m=m₁-m₂

m=11,753 kg de butano en la cocina.